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Dynamic Analysis of Harmonically Excited Non-Linear
System Using Multiple Scales Method

Byung-Young Moon™, Beom-Soo Kang
Department of Aerospace Engineering, Busan National University,
Gumjung~ku, Busan 609~ 735, Korea

An analytical method is presented for evaluation of the sieady state periodic behavior of
nonlinear systems. This method is based on the substructure synthesis formulation and a MS§

(multiple scales) procedure, which is applied to the analysis of nonlinear responses. The

proposed procedure reduces the size of large degrees-of-freedom problem in solving nonlinear

equations. Feasibility and advantages of the proposed method are illustrated with the nonlinear

rotating maching system as an example of large mechanical structure systems. In addition, its

efficiency for nonlinear response prediction will be shown by comparison of other conventional

methods,
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1. Introduction

In recent years, industrial machines used for
the gas turbine for propulsion of an aireraft,
power plant turbine ete. trend toward high-speed
and lightweightdur, which may ¢ause the trouble
of nonlinear vibration. Vibration analysis of such
rotor systems is performed usually by the FEM
(Finite FElement Method)
When large amplitude vibration occurs, however,

with linear model.

nonlinear characteristics of the rotor systems with
complexity can not be represented simply with
linear spring and docmping coeflicients. There-
fore, it is necessary to investigate the nonlinear
characteristics in vibration analysis and design of
rotor systems. On the other hand. a high-speed
rotor system used for the gas turbine for pro-
pulsion of an aircraft, power plant turbine ete.
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promptly pass a critical speed. Accordingly, the
casing is often modeled elasticilly to decrease
the critical speed. Vibration induced in the rotor-
bearing-casing system may make the casing con-
tact the rotor and then give rise to damages of
the bearing possibly. Therefore, the investigation
of the response of a rotating machine is very
important for stable operation. To construct real
mathematical model in vibration analysis, dy-
namic characteristics of rotor, bearing and casing
should be investigated.

For efficient Vibration analysis of a mechanical
system with a large number of DOF’s, the §5M
(Substructure synthesis method) has been stu-
died. Twatsubo et al. (1998) and Moon et al.
(1999, 2001 presented analytical methods fo
analyze the vibration of a nonlinear rotor=bear-
ing-casing system by employing the perturbation
method. They considered the nonlinearity in the
shaft and bearing part and considered the -effect
of nonlinear sensitivity in the subsystern. Moon
et al. (2001) proposed an approximate anslytical
method to analyze the dynamic problems of a
nonlinear structure system using the SSM and a
harmonic balance method.
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However, a nonlinear vibration problem needs
more accutrate analysis in some rotor Systems,
which are used in jet engine of an aircraft or some
power plant turbines. The high-speed and light
weight mechanical systemis lead to more complex
nonlinear vibration. In the analysis of nonlinear
system; there have been a lot of research works
using the method of M8 for the single DOF of
nonlinear vibration System, and its application
to the multi DOF system have -been reported
{Haguanget al., 1987: 1978}, However, the study,
which applied the on the MS method which 1s
applied to the nonlinear vibration analysis of
rotor gystem, has not been reported vet

Therefore, thiy paper presents an analvtical
technigue based on the MS theory and the mode
superposition principle for the dynamic analysis
of nonlinear mechanical systems. Furthermore,
the proposed method enhanced the previous stu-
dies {Twatsubo, et al, 1998 Moon, et al,, 1999:
20017 such that it ean beapplied to more accurate
analysis comparing with the perturbation method
of the previous studies. The proposed method is
then applied to @ nonlinear mechanical system in
order to illustrate the performance of the method
in respect of the computdtional Atcuracy by
comiparing the resulty obtained from the other
convertional methods.

2. Method of Analysis

A structural system consists of @ set of inter-
connecied components that have segments with
distributed mass elasticity and nonlinear parts.
The first stage in analysis process, therefore, is to
sub-structure the origmal nouvlinear system into
some components that can be modeled sepurately
with limear and nonlinear sets. Smiall substrue-
tures may be easier to model and will eventually
regult 1 an economical amalysis procedure,

When a complex large systern 1s modeled with
the SSM, the internal force 1§ vonsidered because
each component can be synthesized through the
internal force with the other omponents as
shown in Fig 1. In this case the internal forces
act -on the component 1 (1b) and component

Joiw the opposite direction with the same
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Fig. 3 Sub-structuring of the complex svstem
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Fig. 2 Rotor-bearing-casing system

magnitude. Those internal forces will disappear
by synthesizing cach component into the overall
system. In this study the external force{lal, which
acts on the rotor, 18 unbalance force,

21
In this paper, we Consider & rotor-bearing

Modeling of the nonlinear system

-gasing system ag shown in Fig. 2. The rotor is
supported by beartngs that are fixed on the casing.
The <cusing and the foundation are elastcally
conngcted. The rotor has materidl nonlinearity.
For dynamic analysis of this kind of complex
systermn, the S8M can be applied.

The coordimates system of the roror-bearing-
casing system is defined as shown in Figo 2. The
g-xye coordinate 1§ fixed 1 the reference frame,
where the x-uxis is perpendicular to directions of
shaft and casing, the v-axis vertically upwards,
and the g-uxis along the shaft and the casing. The
shaft and casing componemts are modeled by
asing the FEM. The rotor system is assumed to be
excited by the unbalance foree. Then assumption
of 4 steady state respouse iy reasonable. The
excitation forces by the eceentric mass wiy at 4
distance ¢, from the rotor geometric tenter are
given by

(FQ, n)={ = e esifrbdny
L F wne: sl @ E4¢g 1 1D

(=1, 2, 3, )
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where ¢ and @ are the phase quantity and the
rotating frequency, tespectively. The excitation
force by the eccentric mass of the rotor can be
greated as a harmonic excitation. In general, the
response shows well the nonlingar ¢haracteristics
near natural frequéncies of in the nonlinear sys-
tem, as observed in the single DOF system. Espe
-ially in the rotor system, the dynamic behavior
around the critical speed is very important whiere
most of the troubles oceur, Therefore, it neéds o
pass the critical speed quickly without froubles.
Because of these reasons, the exciting frequency
around ‘the first natural frequency of the system
should taken into account,

2.2 Modeling of nonlinear component

When the rotor s modeled by the FEM, the
nonlinear characteristic of the restoring force is
regarded as nonlinear-displacement=dependent~
stiffrness. By congidering the boundary conditions,
the equation of motion for the nonlinear compo~

nent can be written as (Moon et al., 1999; 2001)

DM+ DR e bel KU }
s={ VL0 a e UF,

9
(2]

where M ], DK and [Kv]{ 1%} are the mass,
stiffness matrices and nonlinear terim, respectively,
(AL U are an external unbalance force
vector by the votor and an mternal force vector,
respectively. & is & small parameter. The
sitperseript denotes the nonlinear component. The
displacement véctor can be written as

{tu =

where i, G, vy and fy are the displacements and
rotations in the x-direction and y-direction at
the 7~th nodal peint, and 2 the number of nodes,

A %oy Ouis Vs O} =1, 2, =, m) (3)

Exactly to say, vibration modes of @ ponlinear
systern are shightly different frowi those of a linear
system. But for simplicity of analysis, they are
assumed to keep: those of a linear one. Accord-
ingly, the modal coordinate system can be
obtained using the modal matrix '@ ]. Then, the
Eq. (2) can be transformed info the modal coor-

divare {12} system as follows:
{tuy=[!

oJ{¢ ) (4

(& + Mot e ) e 0] [ Byl Ya* ) .
=e{ (@, )} +{ ) s

where, {'fu H=0]"'"F.()}), {lthi=
7L, 1) are the external and internal Torces
in modul coordinates, respectively. Sinee 17
[EwH Y s not a diagonal matrix, this term s
changed into modal coordinates in accordance
with the reasonable procedure (Moon et al., 1999;
2001}, Then, a nonlinear term can be derived as
el ]{ &}

Here, the perturbation method is introduced fo
solve the nonlinear equation in Eq. (5], The
variant €Yk can be reparded as the pe
rturbdtion parameter term, because it 1s relatively
smaller than [Yw?]. Thus { '£ } can be expanded
in terms of @

(6)=

tollows:
(e e TEV S EP o (6

where the superscript (+ )denotes the perturba-
tion order. By sibstitufing Hq. (67 inte Eq. (5).
and wiranging by &, the perturbed equations ¢an
be written a8

¥

{TED 4 [V P]{ &) ={1£],

{1FEV [N ] { eV}

sl b e CED - AY L )
{1EM 4 [V ¥]{ 9]

m{!f (1 zéal))}%ﬁ{x}f{l (O} 4{

where {40 LAY and {14P) are perturbed
internal forces. {fe} and {Ym} include the
nonlinear stiffness term, { Y (P89 be— V]
(1803} {17, (1602 L0y Yl L g[ Mg J( 15002,
LEWL respectively. Here {1897 < 129 g pee
rturbed miodal displacement term which comes
from the perturbation zero~th order and pe-
rturbation first order.

2.3 Modeling of linear, assembling
components and overall system
The casing is modeled as a linear substructure.
With the eigenvalue analysis, the equation of
motion in the modal coordinates can be obtained
as follows;

=& fe b+ ) (8)
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where [Pw®] and [M] are eigenvalue of linear
substructure and identity matrix, respectively, and
[F.] the external force vector. Bven though the
casing component is Hogar systeny, this compos
nent is perturbed the same as the nonlinear com-
higher order harmonic

ponet, because the

oseillation which oecurts 1o the nonlinear com-
ponent. is translated through the higher order

perturbed equation in Eg. {9)

:;i =1
(60} =—{ 1.
=

S

(M} —— { & fﬁ(m
—{ W) (9)

where {27490 1249} and 74,9} are the pe-
rturbed wnternal forces.

Ball bearings are considered, As an dssembling
component, Damping in the bearing, s ignored in
this study for the simplicity of bearing model in
order 1o verily the effect of nonlingar restoring
force. The restoring force of the bearing is
maodeled as

-

s U=1, 2] are bearing coefficient,
{5 b 135 ) the internal force vectors of the
notilinedr component and lnear componeft, fe-
spectively, and { %, | the telative displacemerts
between the rotor and casing corresponding 1o the
bearings. In order to solve the overall gquation,
the small parameter s set equal to the pe
rtarbation pavameter of the nonlinear component,
The internal force vectors can be perturbed as

() =CAO e - (A0 {152) ()
Crl=(h0 e - (102 42} (12)

In order 1o synthesize the components; BEgs.
{9V and (12) are combined and vewritien
according to the equation of order & [f=0, |
{EP KPP ={ FP1Q, 1,€9,69)) 13)
where |1 is the stiffness marrix of the overall
system
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I order to apply the 88M, we introduce the

transformation matrix, which s “composed of
[dher] (1==1, 2}, und the eigenvector matrix of the
(Maon, ¢t al,, 1999, 2001) By

substituting the fransformation warix into Hy.

assembling region.

(13} and pre~multiplying, the overall squation of
order &% e be expressed as

[ o] T[] [daa),
[doal "[Phoz) [9sal.

”.;Z';MV[ fwz 95{71} {(lﬁ
: en] [ Bl Law] =]

The external force with order € is obtained as

{ m )
By applying the modal
f= 0.1 91, Eq.

i R
[l
[ h.] is the modal matrix of the overall sfructure.

analysis technique
(14) can be solved, ‘where

where  [Ql=[@]['C\][@:]",
{ ) and [Pl=[@z] [Vkm][@2].
eigenvalue of the overall systent. Here 17
#9} ds a perturbed modal displacement term

{ G =[0:]
[Saii] is the
{052

which comes from the pertarbation zero-th order
and perturbation first order.
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In this study, the damping term is constdered in

the overall system s 4 pmpmti(}nal damping of

O =alll+B[ wk]

damping coelficients.

where @, are the

3. Response Analysis by
Applying the MS Method

To- obtain the equation to perturbation first
order by MS method, fime scale is introduded as

follows:

Tw==e"t,
d _dly ¢ . d5, d  dl; @
df— df oly T dt ef?Tg dt 4 f»

=Dyt+eDi, +EDy+, ‘

att

By substituting Eq. {16)) into Eq. {15}, and by
arranging it with g, the equations can be rewritten

The exciting fréquency is regarded as a value
near 1o the ficst matural frequency wi By noting
the detuiting parameter o, the exciting frequency
can be expressed ag

] {I8)

Here, ouly the mainh résonance 1§ -considered by
assuming that there 18 no other resonance except
the main resonance.

The solunion of the first equation By, (17) can
be expressed as

{ "= A lexpUm T H{ A fespl—ian Ty (19)

According to Mm MS theory, hy substituting
Ego 118), and Bg. 119) inte BEg. |
tion can be eﬁpreswd inthe single D{“')F‘ form for

, the equa-
the first mode. The seeular term is elimindted
from the particular solution. In 4 similar wiy, a
condition 1o eliminate the secular term of other
components of equation for mi=2, 3, =2y can be

Excited Non-Linear System Using Multiple Scales Method 823

dpplied. When the vibration stedady state, by
dividing the equation into real part and imaging-
ry part and then squaring each eguation, the
eguation can be written as

£20]

The frequency response of the system to the
perturbation first ordér is obtained by solving
Eq. 120). Next, a formulation procedure to obtain
the equation to -perturbation second order is
introduced. According to the second equation of
By, (17}, the particular solution for the single

DOF is obtained by eliminate the secular term.

i ) &
z“‘hz}m@m w%;ﬂ ’w’lz«"h)t%;‘* i 1)

i21)

‘ﬁp t(UrzTi}f o
~ @i

Stemilarly the particulac solution of equation for

- 24 is obtained by eliminate the secular

terim as

k)

i b
(:"e’ziwwxrzmjﬂm +3 % P

%
2 Piesp 3ianTy)

leexplio Texplim Ty Her Uk

By substituting Eq. x 19 md Eq. 122) into the

third equation of Eq. (17}, the egquation can be
solved, However, 1t i qmm mmpim o-solve all
sguations for wi=2, 3, ~ Ly component equation.
Thus, the equation 1 arrdnged according o the
condition to elimindte the secular term (the terms

of few o as follows:

“’?(Um]}g i me& Wt ?Ommp "

When the vibration is steady state, by con-
sidering Eq. (23], the developed equation can be
obtained. Then,

rewritten in termsof the real part and the imagi-

the drranged equation can be

fiary part.
In sdecordance with formulation to the pe-
rturbation fust order, this result corresponds o
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the 72, 3. ~ 7ex=0 relation when the nonlinear

vestoring. foree is  transformed into  modal
coordinates. The particular solution of the single
DOF 7V of By, (21) becomes
D= P A exp (3o Ty) +ce (24)
Sy

By substituting Eqg. {1 (24} into the
thitd equation in Bg. (17), the equation can be
arranged in a simple form. Usitg secular term
{the terms of fw T3}, the single DOF equation

can be obtained as Tollow:

b+, and Eg.

IXI+ “;“ Pgl‘

372
A
daf i

=ity Q{n‘iﬁ lanm A

4{!} ’<?Qn ;Htx“flzﬁ}—ﬁ)ﬁxpﬁﬁﬂ}\

P;;(n Afespl~ioT) +ce=0

i . o .
where A;m;m explif) . By substituting Ay into

Eq. (25}, the equation can be rewritten in terms
of the real part and the tmaginary part. When
the vibration is steady state and the relation of

.‘ . ~'m£ﬁwﬁ+&2ﬂgﬂm(}> is considered, the
equation becomes
Accos y+Besiny=Ce Do cos y+Hesiny=Fe (26}
Acm(jé £o 3 }” ’)(;

Qw}

Beme m @z; D= B¢
where Cc;ma&--f-(u) {z};(ﬂ Pum ggw P‘:m)

_9eRy v>(ﬁ

g (4]
Rt

&0
4ée)z

Be=( -
Fp= (3{@51:&21 QmI §1(£i

By eliminating the terin v from the By, (267,

the polynomial équatien of ¢ is oblained as
follows;
7
GC:»Q& o, wr, P, G, {5) ¥t =) {27)
Fe

The frequency response of the system to the
perturbation second order is obtained by solving
Eyg. (27). From the BEq. {27),
gquation of motion to-the first order of & is

the solution of the

and Beom-Soo Kang

obtained. The response for the single DOF can be
expressed as

ref-L

5

gi==g cos (O ) Eua!;cm 30 M (28

@

where » is obtained from the Eq. (26). The time
responise of the egquation of motion can be
obtained by changing Eg. (28)
coordinates.

into physical

4. Numerical Examples

Here, the response analysis 1§ presented to
demonstrate the application of the proposed
method. The responses of the proposed method
arg compared with those obtained by the classical
analysis technique for accuracy validation.

A pounlinear rotor system, which is shown in
Fig. 3, is considered. The rotor wid the tasing
are considered {o be a uniform beam appro-
The
cross=coupling terms in the bearing are ignored

simately for the simplicity of caleulation
for the simplicity to verily the effect of non-
linearity. The properties of the rotor system are
tabulated 1n Table |

Table 1 Properties of the rotor system
Rotor, Casing length {mm) 1.6 108
Rotor diameter () 3007
Cising diameter (mm) Lo o?
Young's modules of rotor .
£ ) [N/ m®) 34 gt
and casing
Density of rotor and _ '
yo! (Ke/m® | 7.81%10%
casing
Bearing coetficient (N/m) 6.69 5 10
Constrain coefficient {(N/m) LOx 0"
Hroation fome
Hodel
I i T Gubstrosture ]
. Hodes L
ff» ?ﬁ = hassibly Regon
‘ T s Subibtruibs 3
HNolel L Hodss
ol -y
Bl e

Fig. 3 Mndc for Agpalysis
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The rotor -and the casing are modeled with
the eight beam elements. The modal damping
ratios of the rotor system are @, f#==0.05. The
extertial unbalance force with as value of 50 is
acted on the 5th nodal point of substructure 1
The perturbation parameter for the nonlinearity
is adopted ws a small value [dhat is, 0=Xe<048).
If the bigger value for £2>0.6 15 adopted, the
solution will be deviate from the exact one. Thig
is one of the limitation of the multiple scales
method.

Figure 4 shows the fréquency responses which
are calculated by perturbation first order approx-
fmation at the nodal pomt 5 of substructure |
when adopting 5 moded and total modes (18
modes) .

Figure 5 shows the frequency responses which
are cilculated by perturbation second order ap-

B
E
=
2
F0.02
]
HE IR S : ;
Response - oaye of
wd vpthng tetal wpd e
s SRespiaise baoge of
adoyrfieg 5 wndes
i3
! !
i e i
Fig. 4 Freguency response by using first order aps
proxination
3 ¥
'y
=
£ no2 -
il
LX) . ¢
Respose bn wave of
&1 B gafopting total mode
‘ - Respavse fu cise df
g uﬁmg & madex
B b —
t 1.5
e i
Fig. 8 Freguency response by using second order

approximation

cited Now-
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proximation at the nodal point 3 of substructure
I when adopting 5 modes and total modes (18
modes) .

It can be observed that the presented method
show relatively accurate frequency responses by
adopting 5 modes compared with responses of
adopting 81l modes. From this result, it is believed
that “the -nonlinear vestoring force term can be
easily transformed into modal coordinates while
retaining its accurdey with s lower modes ac-
cording to the proposed procedure. To evaluate
the proposed tectinique, the responses need 1o be
compared with the other representative nondinear
analyzing  method, such -ay direct integration
method. Using the FEM, the equation of motion
of rotor system, which Is composed of rotor-
bearing-casing, is obtaimed, Mumerical integra-
tibn is carried out conveniently in terms of first
order equation. Thus, the nonlinear equation is
recast in the state Torm. Then, the fouwrth order
Runge-kutta method s used to obtain the re-
sponse for unbalance excitation.

Figures 6 and 7 shiow the frequeénty responses,
defermined by using the MS method with the first
order and the second order, Those responses are
obtained 4t the nodal point 5 of substructure 1.
Five modes are adopted in each response.

Ag shown in the reference (Hassan, 1994),

1

“Incorrect solutions,” which do not exist it the
direct numerical integration response; appears
o be the solution when using the MS method
with approximéting to the second order. Though
“Incorfect solutions™ appear in the large amp-

litude area around 0.03 or more of the frequenty

E
&
£
% BBz - s
Py
v Amphitude by prisonied wethed
i ensiv ol adepiing § wodes
1
] 18 .
L

Fig. 6 Compurison of Frequency response by asing
first order approximation
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i)

=

=

B

NG

a.01 Y Amx\hmm« By g el swethiad
Freensd uf wdopiiug & wasiley
: 28 Ty
MM
B
1 1.8

Giasg
Fig. 7 Comparison of Freguency response by using
second ordef approximation

response cirve of Figs. 5 and 7, they are neglected

becanse it 1y unrelated 10 substance with this study
$¢it s not shown on the graph. Teecan be observed
that the results of gach method showed well the
nonlinear characteristic in comparatively good
dgreement with the those of direct integration, as
shown in Figs. 6 and 7. Especially, there is a-good
ggreement with kecping the accuracy of the res
sponise between the proposed method of the pe-
rturbation second brdér and integration method
ag shown in Fig. 7

Agon result, the proposed method can o be
emploved for the frequency response with rela-
tively compact formulation of the compleX system
with the almost same degree ol aceuracy with the
dirget numerical integration: Tn this study, the
steady state response is analyzed but the stability
distinction s hot carried out.

Figures 8 and 9 show the system response in the
phme domain response results using the MS meth-
od adopting 5 modes in dccordance with BEq. 140)
and the direct imwratmn method at node 1 and
5 of substructure

node 5 Lo Figure § compares two

thie domin responses when the system i excited

by an external force with exeiting frequency of

38rad/s where the first natural frequency of the
system 15 141rad/see,

Figtre 9 compares two time domain responises
ited by

s which 15 a little

when the structure 15 exci external forge

with exciting fréguency 157
larger than the first mmmt frequency of the
systen. Compared with the amplitude of the ve-
sponse by direct integration method, 1 can be

ohaerved atl the selevied point-that compuratively

Copyright (C) 2003 NuriMedia Co., Ltd.
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B
w1008
W
&
= 0
b
=
S AR08
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= 3.4 3.3 34 35
Tinselyey]
th Displacement at Node 5 in substructure |
< Presented methad,
< Integration method
Fig. 8 Comparison of time history,
(= 38rad /s
'%‘ t HE % 1 ' i ]
IR e B o D SR S A
Wl
& 0
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=000 | ‘ /
9% ey L oF & 1 L i) 7
= ‘ vy | i Vi 4 ¥ 5 b
i Ex 3.8 A 35
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Displacerment at Node 1 in substructure |1
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i
He
g B
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=
F oo
& 37 3 14 £
Tivwe]see]

thy Dasplacement at Node 3 an substructare |
o Pregented miethod,
Integration. method
Figi ¥ Comparison of tuwe history.
L =18 T ead Fsee)

dccurate ponlinear responses of the system s

thustrated with the corresponding phuse. Mever-

theless, there s a little difference -of responsés at
node 1ot substructare 1, as shown i Figs, 8 and
9. By carelul etamination of the responses both it
nodal point 1 and wodal point 5.in ¥
wi8 reverls that the nonlinear
becomes small though 1t is excited near the frst

igs. 8 and 9,
displacement

mattical freguency. This can be understood that
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the amplitude: of the frequency response grows
up even it the exciting frequency exceeds the

first natural frequency because of the effect of

nonlinearity, as observed in Figs. 6 and 7.
Figure 10 shows the corresponding FFT{Fast
Fourier Transform) analysis resulis of time
domain response at node 1 and node 5 of sub-
structure 1, which are calculated by the direct
numerical integration and the MS method. Bach
tifnie responses are obtained by the same simula-
tion condition with Fig. 9. The power spectrum i$
ed 1 a logarithm to confirm the nonlinear

expre:
frequency ¢lement easily in the disgram. Both
results 1n Fig. 10, are comparatively in a good
agresment.

The nonlinear frequency element (3Q7 s ob-
served in each spectrum. Nevertheless, 1t is ob-
served that the spectrum of nonlinear frequency
clement (38 of the proposed method is smaller
than the spectrum obtained by the direct numeri-
cal integration method at node 1 of substructure
Lo Itis assumed that the response of MS method is
approximated response. Accordingly, there might
be an increase ib deviation from the exact solue
tion. There 1§ 1o higher nenlinear frequency ele-
ment (587 in the presented method while the
result of the integration method shows one.
Because the proposed method approximated the

=107 ’
S :
Eg A
> i{l; 32
3 ii{q 7 \x‘
i .
10 e o %
{ S U 150
Frequency[Hz|
(a) Node 1in substructure 1
210
&’ ;
= 1 I
o W t'\i
107 Y
1o o
0 a0 100 150
Frequency[He]
thy Mode 5 in substrucuare 1
- Presented method,
Iategration wiethod
Fig. 10 Comparison of frequency specira

solution to the frequency (307 element, there s
no frequency element (587, Next, the calculation
time is.considered to verify the effectiveness of the
proposed method. For example, the caleulation
time for the responses in Fig. 9 is examined. The
proposed method takes 2 minutes 45 seconds (o
calculate the tune response until the 3.5 second
time interval, while the divect integration method
takes 18 minutes 35 seconds to compute the same
time aterval by using the personal computer o]
Logix IBM Co.. As a result, it can be observed in
this study that a drastic reduction in com-
putational time can be achieved with retaining the
aceuracy. This as a critical Tactor in the analysis of
the structural dynamics with 4 ldrge number of

DOF systems,
5. Conclusions

In this paper, the vibration analysis of a
nondinear mechanical system has been formuluted
theoretically by employving the M8 method. The
formulation 1§ concerned with reducing the niwn-
stitution in accordance with the MS theory. All
the substructures are then revassembled together
and the nonlinear response of the pverall system
Fhis

is obtained for -the harmonic excitation.
method was applied to 4 wonlinear rotor system.
The performance of the proposed method was
compared with the direct integral method interms
of the computational accuracy and tme. It has
been” shown that the nonlinear responses can be
efficiently calculated with the selected number of
vibration modes. And the nonlinear Characteristic
ol the nonlinear restoring foree is well simulated.
As-a result, the proposed method was proved 1o
be an applicable technique for analyzing the
dynamics of the nonlinear structures. Moreover, it
15 believed that those properties of the results can
be utilized 1o the dynamic design of the nonlinear
system.
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